Dive Fisheries in Southeast Alaska

2018 Report to the Alaska Board of Fisheries

January 11 – 23, 2018 Sitka, Alaska

by

Kyle Hebert

Dive Fisheries Research Supervisor – Southeast Region Alaska Department of Fish and Game Division of Commercial Fisheries

Topics

- Focus on major issues of dive fisheries proposals
- Orientation of fisheries
- Pertinent management plan elements
- Population surveys and GHLs (Proposals 86,88,89,90)
- Closed waters sea cucumbers (Proposal 87)

Southeast Dive Fisheries Overview

Dive fisheries

- Sea cucumber throughout much of the region
- Geoduck in southern part of region and Sitka area
- Red sea urchin only in southern part of region around Ketchikan

Management

- Require diving/hand picking; GHLs by area; may have short fishery openings (a day or two per week) or trip limits
- Fishery areas managed by rotation
- Stock assessment surveys required
- Southeast Alaska Regional Dive Fisheries Association (SARDFA)

Challenges

- Sea otter recolonization greatly impacting species and fisheries
- Sparse data about life history and uncertainty of biomass estimates in Southeast Alaska warrant conservative management approach

Historical Fishery Areas

Active Fishery Areas

Sea otter translocation sites 1965-1969

Total of about 400 otters

Sea otters numbers -

1994: 9,000

2017: 25,000+

Sea Otter Impacts

Biomass Estimates

Biomass estimates required for every individual management area

Population monitoring limited to observed density and weight

- Uncertainty around observed biomass estimates
- Confidence intervals and use of lower bound provides a way to increase confidence that true estimate is greater than what is used to calculate the GHL.

Example of Spatial Variability

Patchy distribution (wide C. I.)

Uniform distribution (narrow C. I.)

The true distribution and density is unknown - We only see transect results and so depend on those to predict the non-sampled areas

Confidence Intervals (88,89)

 Harvest rate is applied to biomass value at the lower bound of the 90% confidence interval instead of the midpoint estimate

- A narrow confidence interval is the goal and it means:
 - Less uncertainty and narrower +/- around the midpoint estimate
 - Higher GHL, because lower bound is closer to the midpoint estimate

- Have some control over width of confidence interval by:
 - Setting a precision goal of at least 70% (i.e. lower bound is at least 70% of midpoint estimate)
 - Adding transects, using area-based survey method, stratification

Example of 90% Confidence Interval

Example of Varying Confidence Interval

Geoduck Fishery Expansion (90)

- Current process for expanding fishery to new areas:
 - Reconnaissance surveys, conducted by paid or volunteer geoduck divers
- Exploratory fisheries without biomass surveys:
 - Not allowed under current regulations
 - Poor data quality expected
 - Removes ability to obtain pre-fishery population density
 - Still requires ADF&G survey afterward to estimate biomass

Waters Closed to Sea Cucumber Fishery (87)

- Fishery areas
 - Active areas in orange
- Closed waters
 - 17 areas total
 - 5 control areas
 - 9 very low abundance (blue ovals)
 - Goals to protect subsistence and provide refuge sites
 - Several areas near communities where subsistence uses may exist

